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On the impulsively started rotating sphere 
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Department of Applied Mathematics, The University, Liverpool 3 

(Received 5 May 1966) 

The velocity field generated in a fluid of viscosity, v, by impulsively starting a t  
time t = 0, a sphere of radius a spinning with angular velocity S2 about a diameter 
is described using a new expansion variable 2,,/vt/r. It is first shown how the 
standard time-dependent boundary-layer equations can be modified to give 
series solutions satisfying all the boundary conditions. Next, that these new 
solutions are relevant when the Reynolds number R = a2 Q / v  goes to infinity in 
such a way that R*Qt is large. Lastly, solutions are given, applicable at small 
times for non-zero Reynolds numbers. These last expansions show that the 
velocity components decay algebraically rather than exponentially at large 
distances. 

1. Introduction 
The problem of the flow about a sphere rotating in a viscous fluid is a fascinating 

one which has numerous applications in engineering, astrophysics and meteoro- 
logy. Attention, here, will be restricted to problems which are symmetric about 
a fixed axis of spin for reasons of simplicity. Even then the problem is fully three- 
dimensional. If r ,  19, @ are spherical polar co-ordinates fixed in space with an 
origin at the centre of the sphere and u, v, w are the velocity components in these 
directions, respectively, the boundary condition of no-slip generates a circum- 
ferential velocity w and this in turn generates radial and transverse components 
u, v, via the centripetal acceleration terms in the equations of motion. 

In  the steady flow problem the Reynolds number R = a2Q/v  where a is the 
radius of the sphere, Q is the angular velocity and v is the viscosity of the fluid, 
is the dimensionless parameter that determines the flow. In  the non-steady 
problem the time scale, T provides a second parameter. This has usually been 
taken as the inviscid scale T = Q-1. Most attention has been paid to the impulsive 
motion problems in which the Reynolds number is large as these are the simplest 
mathematically. Using the boundary-layer approximation series solutions have 
been given in powers of the time by Nigam & Rangasami (1953) for the spinning 
spheres and by Illingworth (1954) for the more involved problem of the spinning 
projectile. Illingworth’s results include Nigam & Rangasami’s as a special case. 
For the spinning sphere, the radial velocity component was found not to satisfy 
the boundary condition a t  large distances. 

More recently, Benton (1965) choosing a viscous time scale T = v/a2 has given 
solutions based on the assumption that the dominant velocity component was 
that in the azimuthal direction. He found an approximate solution for the 
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secondary flow and was able to satisfy all the boundary conditions a t  large 
distances. He did not make at all clear the ranges of Reynolds number and time 
over which his solutions were of value. 

The method of this paper is to choose the viscous time as Benton did and then 
to express the solutions in power series in a variable which is a combination 
of the time and the radial co-ordinate, viz. s = 3 &/r. The expansions obtained 
include the boundary-layer results and Benton’s results as special cases and 
satisfy the complete Navier-Stokes equations and all the boundary conditions. 
The precise regions and ranges of values oft and R in which the previously known 
solutions are of value are also clarified. 

2. Equations and boundary conditions 
Consider a sphere of radius a at rest in a homogeneous incompressible viscous 

fluid of densityp and kinematic viscosity v. Suppose that at time t = 0 the sphere 
is given an instantaneous angular velocity S about a diameter and that this is 
maintained at all subsequent times. The equations governing the motion are the 
Navier-Stokes equations 

&/at + (v. V) v = -p-lgradp + vV2v, (1)  

divv = 0. (2) 

In  these, v andp are the velocity and pressure. The initial conditions, and the 
boundary conditions, of no slip at the surface and vanishing velocity at infinity 
imply that: 

at t = 0, v = 0 for all r > a, 

for t > 0, u = v =  0, w = aQsin6 for r = a, 

and v+0 as r+m. 
(3) 

(4) 

1 
Non-dimensional variables are now introduced according to the scheme 

t = Tt’, v = aQv’, r = ar’, p = pa2Q2p’, 

where T is a typical time which is left unspecified for the time being. Equations 
(1)  and (2) using (4) become 

(TQ)-lav/at+ (v.V)v = -gradp+ R--1V2v, ( 5 )  

divv = 0. (6 )  

where the primes have been omitted. Equations (7) and (8) show the forms of the 
transverse and azimuthal components of the momentum equation. There is a 
balance between the time dependent terms, the quadratic convection terms, the 
pressure, and the linear viscous terms 

w2 cot e 1 
quadratic in u and v - ___ (v, + linear in u and v), (7) QT r 

(8) 
Wl 1 
__ + (quadratic in u and v or v and w) = - (wpp +linear in w). 
ClT R 

The full equations appropriate to an axially symmetric problem are given in 
Benton’s paper. 
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3. Previous investigations 
Immediately after the impulsive start, the velocity field consists of a vortex 

sheet at the surface of the sphere. Outside this sheet the velocity is zero. At small 
times diffusion dominates convection, and the fluid is moving almost entirely in 
the azimuthal direction. The two methods that have been found for solving the 
problem a t  small times depend on the relative importance of these two effects. 

If times are considered for which diffusion dominates convection, then disturb- 
ances are confined to a region whose thickness is proportional to 

(vtT): = a(t  . T0Z/R)t. 

If R is large this region will still be narrow when T = O(0-I), i.e. there will be no 
boundary layer of thickness O(R-4) on the body. Under such conditions, it is 
permissible to write 

The equations for the boundary-layer region are found by substituting (9) into 
the equations of motion, and by taking the limit R-tco assuming the starred 
variables are O( 1) .  A typical boundary-layer equation has the form 

T = 0-1, +- = 1+R-!iZ*, u = R-&u*. (9) 

wt - + (quadratic in u* and v or v and w) = w ~ . ~ ’ .  (10) 

The complete set is an order lower than the Navier-Stokes equations so one 
boundary condition has to be discarded. Expansions in powers oft can be found 
by iteration, one of the first-order equations being given by the terms underlined 
in (10). Illingworth gave the solutions as (in dimensional variables) 

u = - 16&Q2ht%(3 C O S ~ ~ - ~ ) ( G ( ~ )  +0(Q2t2)} ,  

v = 8n%aQ2t sin 8 cos O(G’(7) + O(Q2t2)},  1 (11 )  

w = aQ sin 8 cos O{w0(7) + [sin28 wl1(~) + cos2 8zu12(7)] Q2t2 + O(Q4t4)}, 

where 7 = (r - a)/(Z ,$it). As 7 -+ co, G(7) tends to a constant so that the boundary 
condition on the normal velocity component is not satisfied at  large distances. 

When the azimuthal component of velocity is much larger than the other 
components and diffusion and convection are comparable 

u , v  < w and T = Q-IR. ( 1 2 )  

With these assumptions Benton argued as follows. In  the early stages the primary 
flow w, dominates the secondary flow components u, v so at first the non-linear 
terms in (8) may be neglected. For similar reasons the terms in the transverse 
and radial equations which are quadratic in u and v may be omitted; the terms 
of O(w2) must be retained in full. He then went on to solve exactly the linear 
equation for w and showed that w was nearly similar in time provided 
7 = Q t / R  < 10-3, the similarity variable being rb = ( r  - a ) / [ d a (  1 - eT erfc &)I. 
The approximation w = erf y b  was then used in the partially linearized radial 
and transverse equations to find solutions for u and v. He found 

(13) i u = - 2a7 02v-1d3r-4(3 cos2 8 - 1)(G(rb) + O(t2)}, 
v = 2a7 Q2 v-ld2r-l sin 8 cos O ( [ T - ~ G ( ~ ~ ) ] ~ +  O(t2)}, 
w = UQ sin O(F(r, t) + O(t2)}, 



782 K .  E. Barrett 

where d = 1 - er erfc d. As t -+ 0 and r -+ a Benton’s solutions reduce to the first 
terms in Illingworth’s series. The solutions u, v, w-+O as r+m, u showing an 
algebraic decay and v and w exponential decay, so in this sense are an improve- 
ment over the boundary-layer results. The other results of importance are, first, 
that v changes sign at a distance of about 16 radii from the centre of the sphere as 
required by continuity (though this could be a consequence of the approximate 
method used as in this region the errors introduced by taking W to be similar in 
time are large), and, secondly, that the profiles Wcould, by an appropriate choice 
of the similarity variable, be approximately related to the steady-state solutions 
of Howarth (1951). 

4. Present method 
The method described below is capable of including both these results in terms 

of a single expansion procedure. A variable which is appropriate to the descrip- 
tion of the developing boundary layer is that of Blasius, 7 = (r--a)/[Z 2/(vt)]. 
This variable has been used in a variety of problems of the impulsive motion 
type and, in particular, in the now classical problem of Goldstein & Rosenhead 
(1936) on the motion of a circular cylinder perpendicular to its axis. There the 
radial velocity component to a first approximation was found to have the form 

u - 2 2 ~ t ( 7 - d ) ~ 0 ~ 0  -(r-a)cosO, 

whereas the potential flow over the body has the behaviour 

u N - (1  - uz+) cos 8. 

The author felt that if expansions in Z(vt)B/r were developed then these should be 
equivalent to the boundary-layer results near the surface and should also possess 
the correct asymptotic forms. (For small values oft, Benton’s solutions for u and 
v depend on (vtr-”)”.) In  the cylinder problem it was found that expansions could 
be obtained in powers of 2(vt)i/r which reduced to the boundary-layer results in 
the limit R --f m for small r and which differed a t  large values of r from the exact 
potential flow by terms of 0(1/R). 

However, an infinite set of arbitrary functions appeared in these terms of 
0(1/R) which could not be determined in any obvious way. For the spinning 
sphere, this last difficulty does not arise. In  the boundary-layer solutions of 
Nigam and Rangasami, and of Illingworth, the equations are simplified a t  the 
outset and the boundary condition on u as r+m is not satisfied. The choice 
of 2(vt)t/r as the expansion variable enables solutions to be written down 
which satisfy the complete equations and which do satisfy all the boundary 
conditions. 

A dimensionless stream function $, is introduced at this stage, the complete 
transformation being 
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Equation (I) ,  using (14), gives 

{ (: ;s) $ cos 0 - s sin 8$, Dz$, - - s2- (15) I + 2(s sin 8)-2 (1 - 7 ~ ) ~  

and 

= (sinO)-lRs(l-ys) +s) w -  (2 - s 2 g )  $ ($+cot 8 )  w ) ,  
a7 

where 

The equation of continuity is satisfied automatically. 

in a particularly simple manner. The solutions may be written as 
These possess solutions in powers of s, in which the Reynolds number enters 

m,n=O 

m, n=O 

The terms with m = 0 correspond to the boundary-layer solutions of Nigam & 
Rangasami and Illingworth. The functions $(On), w(On) can be deduced from those 
of the standard boundary-layer analysis. Illingworth's results can be used to 
determine $(O0), w(O0), and the value of [(a/a~)w(~l)],=,. The neglect of the terms 
for which m =k 0 requires that 

i.e. Rs Qta2/r2 9 1, Qta2/Rr2 < 1. 

For a given value of Qt and a large value of R the approximations break down 
when QtR9 9 r2/a2. The modified boundary-layer series may be regarded as the 
solution of the equations when R+ co, Qt -+ 0,  in such a way that QtRg is large. 
It is valid within a sphere of radius O([QtR*]&). In  principle, the next series of 
terms with m = 1 could be computed having determined the complete modified 
boundary-layer series. This would give a correction of O([a t /R]* )  to the initial 
series. 

Benton's solutions correspond to the terms with n = 0. In  fact his exact solu- 
tion for the primary flow, W ,  is given by 

R z s 4 9 s  and s <  1, (20) 
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and his approximations to the secondary flow are approximations to the series 

W 

@ = s3R 3 S ~ @ ( ~ " ) ( T ,  6) .  
n= 0 

Benton's solution requires that 

i.e. Rg Qta2/r2 6 1 ,  

R2s4 < s ,  

and so provides a solution for a given Reynolds number which is valid a t  small 
times and at large distances. 

If the functions @,Crnn) and w ( ~ ~ )  are regarded as the elements of infinite rect- 
angular arrays, then the modified boundary-layer series and successive correc- 
tions to it corresponds to summing by rows whereas Benton's method and succes- 
sive corrections to it corresponds to summing by columns. When R = lo5 and 
Qt > 0.005 the second term in the boundary-layer expansion dominates the 
second term in Benton's expansion, and when R = lo5 and at > 1 the third 
term in the boundary-layer expansion dominates the second term in Benton's 
expansion. 

5. Boundary-layer expansion 
We now develop a solution which includes the boundary-layer expansion but 

which is valid for a larger range ofr. Since the neglected terms in the series decay 
algebraically rather than exponentially for a given Reynolds number there will 
be an upper limit to the value of r for which the solution will be applicable. 

When R2s3 % 1 and s < 1 the series (1 8) implies that at large distances from 
the surface 

In order that the boundary conditions on the normal velocity component may 
be satisfied it is sufficient to demand that @(0n)/74n+3 + 0 as 7 + co. The functions 
@-Con) are those that arise in fact in a standard boundary-layer analysis and those 
that are known satisfy the stronger conditions qVon)/y --f 0. As the terms of (15)- 
(17)  that generate (18) and (19) are 

w1,,+2yw1- 2sws = (sin6)-1Rs(w,@g--g$1), (24) 

i t  is suggested that these equations should be taken as the boundary layer equa- 
tions applicable at small times. Equation (25) has the first integral 

as qk1+0 as y-tco. Equations (24) and (26) reduce to the boundary-layer equa- 
tions when s is replaced by 2(vt)*/a in them. This minor modification removes the 
difficulty of the asymptotic form of the stream function and gives the boundary- 
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layer solution as r -+ a ;  in particular the value of the skin friction and the results 
on radial outflow are unaltered. 

The solution of (24) and (26) proceeds iteratively. The solutions for w(On) and 
$(On) can be expressed as sums of products of functions of x and functions of 7. 
Thus 

where U = sin 0 and thefunctions f ( O ) ,  do), f (11) and f (12)  satisfy ordinary differential 
equations deducible from those appearing in Illingworth’s paper. The solutions 
for f ( 0 )  and d o )  can be readily found. Numerical solutions for $(I1) and f (12)  were also 
obtained. 

6. Expansions in s 

For a finite Reynolds number the terms of O(s) in the expansions of w and 
$/(s3 R) dominate the first-order boundary-layer perturbations at small times. 
The lower-order terms in the series for w are found by iterating with the homo- 
geneous form of (16). They satisfy the differential equations 

(28) 1 FO(w(Oo)) = 0, 

Fl(w(lO)) = - 9 (00) yw, 9 

p2(w‘20’) = - (w(oo) eb + cot OwQoo) - (sin 8)-2w(OO)), 

where F, is the differential operator defined by F,( f )  = f7, + 27f2 - Znf. Solutions 
of these are readily obtained as 

which all decay exponentially as 7 -+ 00. The functions r, are defined by the rela- 
tions r, = erfcr, r, = (r,,,),, rn(co) = 0. 

Benton computed the primary flow ignoring the influence of the secondary 
flow, as here by ignoring the right-hand side of (16) and gave the exact solution 
for the homogeneous equations satisfying the boundary conditions (3) as 

r - a  r - a  (vt)+ 

Equations (29) are just the first three terms of the expansion of (30) in powers of s. 
The lowest-order terms in s in the series for the stream function arise from the 

terms on the right-hand side of (15) that are quadratic in the azimuthal velocity 
component. The trigonometrical dependence can be removed by writing 

50 
1c. = UZU,$, w = uw. (31) 

Fluid Mech 27. 
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Equation (10) can then be written as 

x [(g - s2;)'- 6s2 + 

which has the first integral 

(33) 

( (s -s2z+s)  a a  ( 2 - s Z ; )  2 
= ( l - y ~ ) - ~ R s ~ W ~ ,  

a7 

the constant of integration being zero. 
The first three terms in the expansion of $ are such that 

$(i) = u2 u t3 s'", (34) 

F2(s(,o)) = f(0)2, (35) 
F3(s?)) = F3(d0)) + 6~$j)+  37f(0)a + 2f(O)f(l), (36) 

where 

F4(s?)) = 2F4(d1)) + 8~$; - 18sT) + 6y2foa + 12vf(")f(l) + 2f(O)f(2)+f(l)'. (37) 

Equation (35) is identical with one which appears in the boundary-layer 
analysis. To determine the solution of (36) and (37) is a relatively easy but tedious 
process so it was preferred to integrate the equations numerically. In  order to 
proceed the asymptotic forms of the solutions are required. As 7 + 03, do)-+ do), 
so from (35) to (37) 

(38) i 
s(l) --f c(0) 7 + C(l), 

s(2)+c(0)72+ 2c(l)7 +c(2), 

s(3) + c(0)73 + 3c(1)72 + 3c(2)7 + c(3), 

where do) ,  c(1), c(2), d3) are constants. These suggest that at large distances from the 
surface, the solution of (33) takes the form 

This shows the dependence on r as Benton's solution. 

7. Discussion 

muthal velocity component has the form 
The ranges of validity of the two expansions can now be clarified. The axi- 

w = u{f(O) + sf(1) + ,92f(2) + s3f(3) + s4f(4) + O(s5) + ( u2f(ll) + u2 (12) e f  ) 22284 + o ( R ~ ~ s ) ) .  

The f's satisfy the relationships 

pq < 0.10 (i = 1,2), 

pq < 0.01 (i = 1,2),  
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so convergence can be expected for values of s up to 0.1 and for values of Rs2 up 
to 1. Now s and Rs2 have their maximum values at the surface so these values 
imply that the maxima for 2Qt/R and 4Qt should be 0.01 and 1 respectively. 
The ternis O(R2s4) and O(s) are comparable when 

0.01~284 = o(o.i~), 
i.e. Qt = O(R-*). 

Figure 1 shows the three curves Qt = R/200,  Qt = 4 and Qt = R). In  region 1, 
the boundary solutions apply, in region 2 Benton’s solution is adequately repre- 
sented by the first few terms of the series in s only, in region 3 the series in s only 

FIGURE 1. Approximate ranges of validity of boundary-layer solution, Benton’s solution, 
and ‘s’ series. 

is slowly convergent to Benton’s exact solution, and in region 4 the boundary- 
layer terms are important and the boundary-layer expansion is slowly converg- 
ent. By considering the form of the secondary flow, Benton concluded that his 
analysis was only valid if Qt/R < This is not sufficient. It is also necessary 
to impose the condition QtRi  < 1. 

The other main conclusion is that by modifying the boundary-layer expansion 
in a very simple way by replacing Qt by HRs2 = all the boundary condi- 
tions can be satisfied, the resulting expansions being valid for R > 104 and over 
a wider range of values of r /a  than has previously been thought. 

60-2 
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